
International Research Journal of Education and Technology
Peer Reviewed Journal

ISSN 2581-7795

Page 493

ABISHEK P1

1 Student, Dept. of Electronic and instrumentation Engineering, Bannari amman institute of technology, INDIA

---***--
Abstract - The Endpoint Detection and Response (EDR)
system is an advanced cybersecurity solution designed to
provide continuous monitoring, detection, and automated
response to potential threats targeting endpoint devices. It
operates in real time, using a combination of signature-based
detection, heuristic analysis, and behavioral monitoring to
identify both known and unknown threats, such as malware,
ransomware, and fileless attacks. The EDR system employs
powerful techniques like API hooking to monitor
system-level activities, including file access, process
creation, memory usage, and network communications. By
analyzing system behaviors and correlating themwith threat
intelligence, the EDR system can quickly detect anomalies,
suspicious patterns, and unauthorized actions that might
indicate a security breach. It provides comprehensive
visibility into endpoint activities, helping security teams
identify threats early and mitigate damage effectively. The
system also integrates with external threat intelligence
sources to stay updated on the latest vulnerabilities and
exploits, ensuring proactive defense against emerging
threats. Equipped with a user-friendly interface, the EDR
allows administrators to configure scan settings, view
real-time logs, and manage security responses. Whether
performing routine scans or responding to active incidents,
the system empowers security teams with the tools needed
to maintain endpoint integrity and minimize the impact of
cyberattacks.

Key Words: Endpoint Detection and Response (EDR),
Cybersecurity Monitoring, Threat Intelligence, Behavioral
Analysis, API Hooking, Heuristic Analysis

1. INTRODUCTION

In today’s rapidly evolving cybersecurity landscape,
safeguarding endpoints has become a critical priority for
organizations. Endpoints, such as desktops, laptops, and
servers, often serve as entry points for cyberattacks, making
them vulnerable to threats like malware, ransomware, and
advanced persistent threats (APTs). To address these
challenges, the Endpoint Detection and Response (EDR)
system has emerged as an essential cybersecurity
solution.The EDR system continuously monitors and
protects endpoints against a wide spectrum of security

threats. By combining signature-based detection, heuristic
analysis, and behavioral monitoring, the system can
effectively identify and mitigate both known and unknown
threats. It operates in real time, focusing on system activities
such as file access, process execution, memory utilization,
and network traffic to detect anomalous or malicious
behaviors.Through advanced techniques like API hooking,
the EDR system delves into low-level system operations to
identify abnormal activities and intervene before attacks
escalate. This capability allows the EDR solution tomonitor
critical events, including file modifications, unauthorized
process creation, and suspicious network communications.
Beyond robust detection capabilities, the EDR system
empowers security teams with actionable insights and
automated responses. By leveraging external threat
intelligence sources and continuously analyzing endpoint
data, the system ensures organizations stay ahead of
emerging threats. Its proactive defense mechanisms and
deep endpoint visibility form a cornerstone of any modern
cybersecurity strategy, enabling rapid detection and
response to potential breaches.

1.1 Client-Server Architecture

The EDR solution is built on a scalable client-server
architecture, where the client (PlanqX Sensor) operates
on endpoint devices, and the server acts as a centralized
hub for data aggregation, analysis, and threat management.
The client collects real-time data, monitoring activities like
file access and network traffic, and forwards this
information to the server. The server correlates these
findings with threat intelligence, performs deeper analysis,
and provides actionable commands for mitigation.

1.2 PlanqX Sensor (Client-Side Component)

The PlanqX Sensor is a lightweight agent installed on
endpoint devices, responsible for real-timemonitoring and
data forwarding. It hooks into system APIs to track critical
activities such as process creation, file modifications, and
memory usage. Despite its advanced capabilities, the sensor
operates with minimal resource consumption, ensuring
uninterrupted endpoint performance. When it detects

https://www.irjweb.com/current_issue.php

International Research Journal of Education and Technology
Peer Reviewed Journal

ISSN 2581-7795

Page 494

suspicious activities, it can trigger alerts, block threats, or
initiate automated responses to neutralize potential risks.

1.3 Server Architecture

The server component functions as the brain of the EDR
system, processing data received from client sensors. It
correlates findings with threat intelligence, performs
behavioral analysis, and generates actionable insights.
Designed for scalability, the server can support a large
number of endpoints, making it suitable for organizations of
all sizes. Administrators can interact with the server through
a command-line interface (CLI) or a graphical user
interface (GUI) to view logs, configure settings, andmonitor
security events.

1.4 Installation and Requirements

Deploying the EDR system requires the installation of both
client and server components.

Client Installation: The PlanqX Sensor is deployed on
endpoint devices using automated scripts, ensuring a
streamlined setup process.
Server Installation: The server can be hosted on a
dedicated machine or a cloud-based infrastructure. It
requires a modern operating system, sufficient processing
power, and adequate storage to manage data from connected
endpoints. Internet connectivity is essential for integrating
external threat intelligence feeds, and the server-client
communication is secured over encrypted channels.

1.5 Add-ons and Configurations

The EDR system supports flexible configurations and
add-ons to cater to diverse security requirements.

Accounts Management: Role-based access control ensures
that sensitive data and system functions are accessible only
to authorized personnel, such as administrators and security
analysts.

Logging and Reporting: Comprehensive logs capture every
detected threat, system activity, and response action. These
logs are stored locally and centrally, with options to forward
them to external systems for long-term analysis or
compliance reporting.

2.CLIENTARCHITECTURE (PLANQX SENSOR)

The PlanqX Sensor is the client-side agent that resides on
each endpoint device, performing real-timemonitoring and
data collection. Its primary purpose is to continuously
observe system activities, detect potential threats, and
forward critical data to the server for further analysis and
response. The sensor is lightweight and designed to operate
with minimal impact on system performance while
maintaining robust protection against cyber threats.

Table -1: Feature Comparison Table

2.2 Role of Sensor

The sensor's primary role is to monitor system activities at
the endpoint level, including file access, process creation,
network traffic, and registry changes. It collects this data
through a combination of signature-based and behavioral
monitoring techniques. The sensor is responsible for
sending relevant information back to the server for deeper
analysis and correlation with other endpoint data. In the
event of suspicious activity, it can trigger alerts, block
harmful processes, and take corrective actions based on
predefined rules or commands from the server.

2.3 Design Goals

The PlanqX Sensor was designed with the following key
goals in mind:

Real-Time Threat Detection: It continuously monitors
system behavior to detect potential threats, such asmalware
or ransomware, as soon as they occur.

Minimal Resource Consumption: The sensor is designed
to use as few system resources as possible to avoid
impacting the user experience or performance.

Remote Management: The sensor can receive updates,
configurations, and commands from the server without
requiringmanual intervention on each endpoint.

https://www.irjweb.com/current_issue.php

International Research Journal of Education and Technology
Peer Reviewed Journal

ISSN 2581-7795

Page 495

Stealth and Evasion: The sensor operates discreetly
without alerting potential attackers, ensuring its presence is
undetected by malicious software.

2.6 PerformanceOptimization

To minimize system resource consumption, the PlanqX
Sensor is optimized for performance:

.The sensor’s operations are highly optimized to minimize
CPU and memory usage, ensuring that the endpoint’s
primary functions remain unaffected by the monitoring
process.

Not all events are equally critical. The sensor filters out
irrelevant data, ensuring that only high-priority or
potentiallymalicious activities are transmitted to the server.

The sensor uses a compressed and encrypted format for
transmitting data to the server, ensuring efficient bandwidth
usage while maintaining the security and integrity of the
data.

2.7 Logging and Alerting

The PlanqX Sensor is equipped with robust logging and
alerting capabilities:

Local Logging: The sensor logs all events and detected
activities on the endpoint, which can be stored locally for
future reference or forensic analysis. These logs are
encrypted to ensure confidentiality.

Centralized Logging: The data is forwarded to the server
for centralized logging and analysis. This provides security
teams with a unified view of all endpoint activities across
the network.

Real-Time Alerts: The sensor triggers real-time alerts based
on predefined thresholds, such as unusual file modifications
or unauthorized process executions. These alerts can be sent
to the server, which then notifies the administrators.

3. SERVER SIDEARCHITECTURE

3.1 Core Components

The Server-Side Architecture serves as the heart of the EDR
system, processing data received from the PlanqX Sensors on
the endpoints. The core components of the server
architecture include:

Data Ingestion and Storage: The server collects data from
the client-side sensors, including event logs, alerts, and

system behavior reports. This data is securely stored in a
centralized database that allows for quick retrieval and
correlation.

Threat Intelligence Integration: The server integrates
with external threat intelligence feeds to keep the system
updated on emerging threats. These feeds provide additional
context for the alerts and data collected from the endpoints.

Analysis Engine: The analysis engine processes incoming
data, analyzing it against known threat patterns, signatures,
and behaviors. It uses advanced algorithms to correlate
endpoint data, looking for potential threats and patterns of
suspicious behavior.

Alert Management System: This component handles the
classification, prioritization, and notification of detected
threats. It ensures that administrators are promptly alerted
about critical security incidents.

Communication Layer: The communication layer manages
the secure exchange of data between the server and the
endpoint sensors, ensuring that information is transmitted
efficiently and safely.

3.2 Administrator Dashboard – CLI

The Administrator Dashboard provides a user interface for
security professionals to manage, monitor, and respond to
threats. For advanced users and automated operations, a
Command-Line Interface (CLI) is available, allowing
administrators to interact with the server through scripted
commands.

Real-Time Alert Monitoring: Administrators can view
real-time alerts and security incidents as they occur on the
network.

Endpoint Status Overview: The dashboard provides an
overview of all endpoint devices, their current status, and
their communication with the server.

Incident Response Management: Administrators can take
immediate action based on alerts, such as isolating
endpoints, stopping malicious processes, or running
diagnostic scans.

Threat Analysis: The CLI can be used to perform detailed
threat analysis, allowing security teams to dig deeper into
alert details and endpoint behaviors

https://www.irjweb.com/current_issue.php

International Research Journal of Education and Technology
Peer Reviewed Journal

ISSN 2581-7795

Page 496

.Fig -1:EDRCLI interface

3.3 Telemetry Collection

The server plays a crucial role in Telemetry Collection,
gathering and analyzing system behavior data from the
endpoints. Telemetry data includes logs, system events, user
activities, and metadata, which provide insights into the
overall health and security posture of the network.

Continuous Monitoring: The server continuously collects
telemetry data from the sensors, ensuring real-time
visibility into endpoint activities.

Granular Data Collection: Telemetry is collected at a
granular level, including process executions, file system
changes, network traffic, and system resource usage.

This telemetry helps provide a comprehensive view of the
security environment, enabling proactive threat hunting and
incident response.

3.5Threat Detection and Correlation

The Threat Detection and Correlation engine is one of the
most critical components of the server architecture. It uses
advanced techniques to detect, prioritize, and correlate
potential threats across endpoints in real-time.

Signature-Based Detection: The server compares data
collected from sensors against known malware signatures
and behaviors to identify threats based on predefined
patterns.

Heuristic and Behavioral Analysis: The engine identifies
suspicious activities based on their behavior, even if they
don’t match known signatures. For example, it may detect
ransomware-like behavior, such as mass file encryption, or
unusual system activities that deviate from normal patterns.

Event Correlation: The server correlates data from multiple
endpoints to identify coordinated attacks, such as lateral
movement ormalware spreading across the network. By

analyzing related events from different systems, the server
can piece together a broader view of the attack.

4. NETWORKINGANDMONITORINGON SERVER

Networking monitoring on the server side focuses on
overseeing the traffic flow, detecting suspicious activities,
and ensuring that communications between endpoints and
external systems are secure. This is achieved using
Windows Networking Libraries such as WinPCap, WFP
(Windows Filtering Platform), and NIDPS. These libraries
allow for comprehensive traffic capture and analysis at both
the network and transport layers.

By integrating encrypted proxy servers, the system can route
all traffic through a secure channel, ensuring no data is
leaked or tampered with. It provides insight into real-time
traffic from endpoints, including the communication with
external servers, allowing for the detection of malicious
activities such as phishing attacks, C2C (Command and
Control) communications, and data exfiltration.

4.2 Traffic Analysis

Traffic analysis on the server involves the constant
observation of all inbound and outbound network traffic
from the endpoints. By leveraging Windows Network
Libraries, the server captures and analyzes packet data,
looking for abnormal patterns or known attack vectors. The
implementation uses custom proxy servers to capture traffic,
encrypt it, and analyze it using pattern matching, frequency
analysis, and anomaly detection.

Real-time Traffic Inspection: Continuous monitoring of
the flow of data allows the detection of suspicious spikes or
drops in traffic. For example, when an endpoint suddenly
begins sending large volumes of data, it could signal a data
breach or exfiltration attempt.

Phishing Detection: Traffic analysis is enhanced with IOC
to detect suspicious URLs, IP addresses, or domains,
providing an extra layer of protection against phishing
attempts.

4.3 Packet Inspection

Packet inspection involves analyzing the individual network
packets that flow through the system. Using the Windows
Packet Capture (WinPCap) library, the EDR server inspects
packets for patterns such as malicious payloads, port
scanning, or unexpected data. The proxy server ensures that
all traffic is inspected, even if encrypted, by intercepting and
decrypting traffic before passing it to the endpoint.

https://www.irjweb.com/current_issue.php

International Research Journal of Education and Technology
Peer Reviewed Journal

ISSN 2581-7795

Page 497

Layered Inspection: All data from endpoints is captured
and analyzed at the application, transport, and network
layers.

Encrypted Traffic Handling: The proxy server decrypts
encrypted traffic (e.g., HTTPS) between endpoints and
external servers to inspect for malicious content, ensuring
that malicious communications aren’t missed.

4.4 Anomaly Detection

Anomaly detection involves identifying irregular behaviors
in network traffic patterns. By using statisticalmethods, the
server can automatically flag anomalies based on typical
network activity and historical data.

Behavioral Analysis: Identifies any deviation from baseline
traffic behaviors, such as an endpoint connecting to unusual
or suspicious IP addresses or domains. For example, if a
device typically only communicates with internal systems
and suddenly contactsmultiple external domains, it could be
a sign of a compromise or botnet activity.

Threshold-Based Alerts: The system automatically
triggers alerts when certain thresholds for traffic volume or
frequency are surpassed. This enables prompt response to
potential threats likeDDoS attacks or data exfiltration.

4.5 Protocol-Specific Monitoring

The system is capable of monitoring traffic across various
network protocols such as HTTP, HTTPS, DNS, FTP, and
SMB. The proxy server inspects these protocols in real-time,
checking for protocol-specific anomalies, such as DNS
tunneling, command-and-control messages in HTTP
requests, or suspicious SMB communications.

DNS Monitoring: The server monitors DNS queries,
checking for domain fluxing (a common tactic used by
malware), detecting unauthorized DNS requests and filtering
malicious domains.

HTTP/HTTPS Requests: Inspects HTTP/HTTPS traffic to
identify common attack patterns, such as SQL injection,
cross-site scripting (XSS), or attempts to exploit
vulnerabilities in web applications.

4.6 Tampered Domain, IP, Subdomain Monitoring

This component tracks andmonitors domains, IP addresses,
and subdomains that may be associated with malicious or
unauthorized activities. The server cross- references
endpoints’ traffic with threat intelligence feeds, blocking
known malicious IPs, domains, and subdomains.

Real-Time Blocking: When traffic attempts to reach a
known compromised domain or IP address, it is
immediately flagged, logged, and blocked.

IOC (Indicators of Compromise) Database: The server
can hold up to 10,000+ IOCs (e.g., suspicious IPs, domains,
or URLs), continuously comparing and updating known
threat indicators in real-time.

5.USER & KERNELMODE DETECTION

5.1 User Mode Overview

User-mode detection is essential in identifying malicious
activities originating from applications or user-space
programs. The EDR system uses Windows internal APIs to
intercept system calls, monitor processes, and flag abnormal
behaviors indicative of malicious activity.

5.1.1 User Mode Detection

At the core of user-mode detection, the EDR leverages
internal Windows APIs like NtQuerySystemInformation,
CreateProcess, and NtReadFile. These APIs allow the EDR
tomonitor the creation of processes, track system calls, and
inspect file system accesses in real-time. For example, when
a suspicious process tries to open a file, NtCreateFile API is
monitored for unusual access patterns.

5.1.2 Techniques andMethods

TheEDRuses several key techniques:

API Hooking: Through SetWindowsHookEx and Detours
API, the EDR system can intercept API calls and inspect
parameters or return values

File and Process Monitoring: The system hooks the
NtOpenProcess andNtQueryDirectoryFile to track processes
and file operations, enabling detection of malicious file
system modifications.

5.1.3 API Hooking

API hooking in user-mode is implemented using the Detours
library or Inline Hooking techniques tomonitor critical APIs
like NtWriteFile and CreateFile. When an API call such as
NtCreateFile is made, the EDR inspects the parameters (like
file paths) for abnormal behavior, such as accessing
system-sensitive files or files outside standard directories. If
malicious activity is detected, the EDR can block the process
or alert the administrator.

https://www.irjweb.com/current_issue.php

International Research Journal of Education and Technology
Peer Reviewed Journal

ISSN 2581-7795

Page 498

5.1.4 Dynamic-Link Library (DLL) Injection
Monitoring

Monitoring DLL injections is done through intercepting calls
to LoadLibrary and GetProcAddress, which are frequently
abused by malware to inject code into legitimate
processes. The EDR tracks when a process loads an
untrusted DLL and blocks it if it’s not signed or part of the
trusted list. It also looks forRtlCreateUserThread to detect
thread injection attempts that malware might use for
persistence.

5.1.5 ProcessMonitoring

Process monitoring is achieved through hooks placed on
APIs like NtQuerySystemInformation and
ZwQueryInformationProcess, which help track process
execution and identify any process that behaves abnormally
or tries to bypass security mechanisms. Suspicious
processes, such as those trying to modify system files or
escalate privileges, are flagged and terminated if necessary.

5.1.6 File SystemMonitoring

The file system is monitored by hooking APIs such as
NtCreateFile and NtWriteFile, which are responsible for
file creation and modification. The EDR inspects these calls
to detect malicious files, especially those attempting to alter
critical system files. If a suspicious file is detected (e.g.,
ransomware trying to encrypt files), it is quarantined or
blocked.

5.1.7 Event-Based Monitoring

Event-basedmonitoring is achieved throughWindows Event
Tracing for Windows (ETW) or
ZwNotifyChangeDirectoryFile to capture system-level
events. These events, like user login failures or unexpected
file access patterns, are logged and analyzed in real-time to
identify potential security threats.

5.2 Kernel Mode Overview

Kernel mode monitoring focuses on the system’s most
privileged level of execution. Malicious activities in kernel
mode can subvert many security measures, so detecting and
preventing them is critical. The EDR uses Windows internals
to hook into kernel routines and track low-level system
interactions.

5.2.1 Kernel Hooking

Kernel hooking is implemented by intercepting calls to
kernel-level functions using techniques like Inline Hooking
and Kernel Modules. Key functions such as ZwOpenFile and
ZwSetInformationFile are hooked to detect abnormal
behavior, like unauthorized access to kernel memory. This
allows the EDR to block activities like rootkit installation
before they can compromise the system.

5.2.2 DriverMonitoring

Driver monitoring is accomplished by checking loaded
drivers using PsLoadedModuleList and hooking into
IoCreateDevice and IoCreateSymbolicLink. The EDR
watches for unsigned or suspicious drivers that could
potentially give attackers access to privileged kernel
resources. If a malicious driver is detected, it is flagged, and
the system may prevent it from loading.

5.2.3 ELAM (Early Launch Anti-malware)

ELAM is integrated into the EDR to protect against
early-stagemalware that loads before the operating system
has fully initialized. By monitoring driver and module
loading during boot using NtLoadDriver and integrating
with Secure Boot, ELAM ensures that malicious code is
blocked before it can interact with the system.

5.2.4 Direct Kernel Object Manipulation (DKOM)
Detection

DKOMdetectionworks bymonitoring kernel data structures
for unusual modifications. The EDR tracks changes in
structures like PsActiveProcessHead to detect hidden
processes or rootkits trying to remain undetected. Any
tamperingwith these structures triggers an alert for further
investigation.

CONCLUSION:

In conclusion, the development and implementation of this
Endpoint Detection and Response (EDR) system will
significantly enhance the security capabilities of
Windows-based environments. By leveraging advanced
detection techniques, including real-time monitoring, user
and kernel mode detection, network traffic analysis, and
integration with threat intelligence, the systemwill provide a
comprehensive defense against evolving cyber threats. The
use of client-server architecture ensures scalability and
flexibility, making it suitable for deployment across various
network sizes, from small enterprises to large organizations.

https://www.irjweb.com/current_issue.php

International Research Journal of Education and Technology
Peer Reviewed Journal

ISSN 2581-7795

Page 499

ACKNOWLEDGEMENT

The authors express their sincere gratitude to the faculty and
staff of Bannari Amman Institute of Technology for their
unwavering support and guidance during this project. Special
thanks are extended to the Smart India Hackathon committee
for providing a platform to innovate in cybersecurity. The
authors also acknowledge the contributions of the
open-source community, whose tools and resources were
instrumental in the development of this project.

REFERENCES

[1] B. Schneier, Applied Cryptography: Protocols, Algorithms,
and Source Code in C, 2nd ed., New York, NY:Wiley, 1995.

[2] G. Kim and J. Love, “Evolution of Endpoint Security: From
Antivirus to EDR,” IEEE Security Privacy, vol. 19, no. 4, pp.
57–65, Jul. 2021, doi:10.1109/MSEC.2021.3103301.

[3] J. Smith, “Behavioral-based detection in modern EDR
systems,” Cybersecurity J., vol. 8, pp. 22–30, Sep. 2023.

BIOGRAPHIES

Threat Researcher, Malware
analyser, Pentesting.

https://www.irjweb.com/current_issue.php

	1.INTRODUCTION
	1.1Client-Server Architecture
	1.2PlanqX Sensor (Client-Side Component)
	1.3Server Architecture
	1.4Installation and Requirements
	1.5Add-ons and Configurations
	2.CLIENT ARCHITECTURE (PLANQX SENSOR)

	2.2 Role of Sensor
	2.3 Design Goals
	2.6 Performance Optimization
	2.7 Logging and Alerting

	3.SERVER SIDE ARCHITECTURE
	3.2Administrator Dashboard – CLI
	3.3Telemetry Collection
	3.5 Threat Detection and Correlation

	4.NETWORKING AND MONITORING ON SERVER
	4.2Traffic Analysis
	4.3Packet Inspection
	4.4Anomaly Detection
	4.5Protocol-Specific Monitoring
	4.6Tampered Domain, IP, Subdomain Monitoring
	5.USER & KERNEL MODE DETECTION
	5.1.1User Mode Detection
	5.1.2Techniques and Methods
	5.1.3API Hooking
	5.1.4Dynamic-LinkLibrary(DLL)Injection Monitoring
	5.1.5Process Monitoring
	5.1.6File System Monitoring
	5.1.7Event-Based Monitoring

	5.2Kernel Mode Overview
	5.2.1Kernel Hooking
	5.2.2Driver Monitoring
	5.2.3ELAM (Early Launch Anti-malware)
	5.2.4Direct Kernel Object Manipulation (DKOM) Detection
	CONCLUSION:
	ACKNOWLEDGEMENT
	REFERENCES
	BIOGRAPHIES

